Proximal Policy Optimization

(Schulman et al. 2017) è uno degli articoli principali che praticamente hanno dato via al campo. Anche questo è buono per Policy gradients: https://lilianweng.github.io/posts/2018-04-08-policy-gradient/ Introduzione a PPO References [1] Schulman et al. “Proximal Policy Optimization Algorithms” 2017

1 min · Xuanqiang 'Angelo' Huang

Querying Denormalized Data

TODO: write the introduction to the note. JSONiq purports as an easy query language that could run everywhere. It attempts to solve common problems in SQL i.e. the lack of support for nested data structures and also the lack of support for JSON data types. A nice thing about JSONiq is that it is functional, which makes its queries quite powerful and flexible. It is also declarative and set-based. These are some commonalities with SQL....

6 min · Xuanqiang 'Angelo' Huang

Softmax Function

Softmax is one of the most important functions for neural networks. It also has some interesting properties that we list here. This function is part of The Exponential Family, one can also see that the sigmoid function is a particular case of this softmax, just two variables. Sometimes this could be seen as a relaxation of the action potential inspired by neuroscience (See The Neuron for a little bit more about neurons)....

3 min · Xuanqiang 'Angelo' Huang

Advanced SQL

Check function A volte può essere molto pesante, perché What does check do? Viene utilizzato per introdurre un constraint check per avere sicurezza su un range. Check e innestamenti 🟩- Può essere che certe implementazioni non permettano il check innestato, questo è una cosa molto pesante, perché ogni modifica deve andare a rifare la modifica ai subalterni, quindi questo è pesante pesante. Assertions 🟩– Sono dei check fatti al livello dello schema, quindi valgono sempre, e possono essere riutilizzati in table diversi credo....

4 min · Xuanqiang 'Angelo' Huang

Asymmetric Cryptography

Public Key Encryption We now define a formally what is a public key encryption Formal definition of Public Key Encryption We define a 3-tuple formed as follows: $(G, E, D)$ where $G$ is the generator for the private and public keys, from now on identified as $(pk, sk)$ (public key and secret key) $E(pk, m)$ the encryption algorithm, that takes the $pk$ and the message in input $D(sk, c)$ the decryption algorithm, that takes the $sk$ and the ciphertext in input....

8 min · Xuanqiang 'Angelo' Huang