In questa serie di appunti proviamo a descrivere tutto quello che sappiamo al meglio riguardanti gli autoencoders Blog di riferimento Blog secondario che sembra buono
Introduzione agli autoencoders L’idea degli autoencoders è rappresentare la stessa cosa attraverso uno spazio minore, in un certo senso è la compressione con loss. Per cosa intendiamo qualunque tipologia di dato, che può spaziare fra immagini, video, testi, musica e simili. Qualunque cosa che noi possiamo rappresentare in modo digitale possiamo costruirci un autoencoder. Una volta scelta una tipologia di dato, come per gli algoritmi di compressione, valutiamo come buono il modello che riesce a comprimere in modo efficiente e decomprimere in modo fedele rispetto all’originale. Abbiamo quindi un trade-off fra spazio latente, che è lo spazio in cui sono presenti gli elementi compressi, e la qualità della ricostruzione. Possiamo infatti osservare che se spazio latente = spazio originale, loss di ricostruzione = 0 perché basta imparare l’identità. In questo senso si può dire che diventa sensato solo quando lo spazio originale sia minore di qualche fattore rispetto all’originale. Quando si ha questo, abbiamo più difficoltà di ricostruzione, e c’è una leggera perdita in questo senso.
...