Backpropagation

Backpropagation is perhaps the most important algorithm of the 21st century. It is used everywhere in machine learning and is also connected to computing marginal distributions. This is why all machine learning scientists and data scientists should understand this algorithm very well. An important observation is that this algorithm is linear: the time complexity is the same as the forward pass. Derivatives are unexpectedly cheap to calculate. This took a lot of time to discover. See colah’s blog. Karpathy has a nice resource for this topic too! Stanford lecture on backpropagation is another resource. ...

8 min · Xuanqiang 'Angelo' Huang

The Perceptron Model

The perceptron is a fundamental binary linear classifier introduced by (Rosenblatt 1958). It maps an input vector $\mathbf{x} \in \mathbb{R}^n$ to an output $y \in \{0,1\}$ using a weighted sum followed by a threshold function. Introduction to the Perceptron A mathematical model Given an input vector $\mathbf{x} = (x_1, x_2, \dots, x_n)$ and a weight vector $\mathbf{w} = (w_1, w_2, \dots, w_n)$, the perceptron computes: $$ z = \mathbf{w}^\top \mathbf{x} + b = \sum_{i=1}^{n} w_i x_i + b $$$$ y = f(z) = \begin{cases} 1, & \text{if } z \geq 0 \\ 0, & \text{otherwise} \end{cases} $$Learning Rule Given a labeled dataset $\{ (\mathbf{x}^{(i)}, y^{(i)}) \}_{i=1}^{m}$, the perceptron uses the following weight update rule for misclassified samples ($y^{(i)} \neq f(\mathbf{w}^\top \mathbf{x}^{(i)} + b)$): ...

3 min · Xuanqiang 'Angelo' Huang