Variational Inference

$$ p(\theta \mid x_{1:n}, y_{1:n}) = \frac{1}{z} p(y_{1:n} \mid \theta, x_{1:n}) p(\theta \mid x_{1:n}) \approx q(\theta \mid \lambda) $$For Bayesian Linear Regression we had high dimensional Gaussians which made the inference closed form, in general this is not true, so we need some kinds of approximation. Laplace approximation Introduction to the Idea 🟩 $$ \psi(\theta) \approx \hat{\psi}(\theta) = \psi(\hat{\theta}) + (\theta-\hat{\theta} ) ^{T} \nabla \psi(\hat{\theta}) + \frac{1}{2} (\theta-\hat{\theta} ) ^{T} H_{\psi}(\hat{\theta})(\theta-\hat{\theta} ) = \psi(\hat{\theta}) + \frac{1}{2} (\theta-\hat{\theta} ) ^{T} H_{\psi}(\hat{\theta})(\theta-\hat{\theta} ) $$ We simplified the term on the first order because we are considering the mode, so the gradient should be zero for the stationary point. ...

9 min Â· Xuanqiang 'Angelo' Huang

Wide Column Storage

Introduction to Wide Column Storages One of the bottlenecks of traditional relational databases is the speed of the Joints, which could be done in $\mathcal{O}(n)$ using a merge join, assuming some indexes are present which make the keys already sorted. The other solution, of just using Distributed file systems, is also not optimal: they have usually a high latency, with high throughput, that is not optimal with the series of small files that it is optimized for. While Object Storages, do not have APIs that could be helpful -> richer logical model. ...

9 min Â· Xuanqiang 'Angelo' Huang

Campo elettrico

Introduzione Intuizione del campo elettrostatico Elettrostatico vs elettrodinamico 🟩 Andiamo a chiamare elettrostatico perché nel nostro caso non si sta muovendo nessuna carica all’itnerno di questo campo. Proprietà del campo elettrostatico (5) 🟨 Le linee di forza in ogni punto dello spazio sono tangenti e concorde al campo in quel punto; le linee di forza si addensano dove l’intensità del campo e maggiore; le linee di forza non si incrociano mai, in quanto in ogni punto il campo è definito univocamente e non può avere due direzioni distinte. le linee di forza hanno origine dalle cariche positive e terminano sul cariche negative; qualora ci siano solo cariche dello stesso segno le linee di forza si chiudono all’ infinito; nel caso di cariche di segno opposto, ma eguali in modulo, tutte le linee the partono dalle cariche positive si chiudono su quelle negative (induzione completa), alcune passando eventualmente per l’infinito; se invece le cariche non sono eguali in modulo, alcune linee terminano o provengono dall’ infinito. Carica esploratrice 🟩 È anche chiamata carica di prova, è una carica fittizia messa per esplorare la struttura del campo elettrico in un certo spazio ...

5 min Â· Xuanqiang 'Angelo' Huang

Leggi di Ohm

Gli argomenti della lezione 31 Ottobre sono circa da pagina 164 fino a 185 del mazzoldi. Leggi di Ohm Introduzione microscopica 🟩 Sappiamo che $$ \vec{J} = -n e \vec{v}_{d} ne^{2} t \frac{\vec{E}}{m} $$ Vedi analisi della velocità di deriva col modello del 1900 in Corrente Elettrica. Dove abbiamo utilizzato la definizione di densità di corrente e la velocità fra collisioni ed altre Questo è una motivazione per considerare la densità di corrente come se fosse nello stesso verso. ...

7 min Â· Xuanqiang 'Angelo' Huang

Potenziale Elettrostatico

Introduzione al potenziale elettrostatico Abbiamo studiato in dinamica che il potenziale è un concetto strettamente legato al Lavoro, ossia dalla quantità di energia necessaria per spostare un oggetto da un punto all’altro, vogliamo cercare di definire le relazioni che intercorrono nel caso della forza elettromagnetica Rotore nullo => forza conservativa 🟩 $$ \vec{\nabla} \times \vec{F} \implies \vec{F} \text{ è una forza conservativa} $$$$ \oint_{L} \vec{F} \cdot d\vec{l} = \iint_{S} \vec{\nabla} \times \vec{F} \,d\vec{s} $$ E se abbiamo che il rotore è nullo, allora la forza è conservativa perché per definizione è conservativa se non dipende dal percorso, e la cosa che un circuito chiuso è sufficiente per dimostrare il sopra. ...

4 min Â· Xuanqiang 'Angelo' Huang

Central Limit Theorem and Law of Large Numbers

Bounds Markov Bound $$ P(X \geq y) \leq \frac{E[X]}{y} $$$$ yP(X \geq y) = y\int _{x =y}^{+\infty} f(x) \, dx \leq \int _{x=y}^{+\infty} x f(x) \, d \leq \int _{-\infty}^{+\infty}xf(x) \, d = E[X] $$ Il che finisce la dimostrazione. Chebychev Bound $$ P(\lvert x - E[X] \rvert \geq y) \leq \frac{\sigma^{2}}{y^{2}} $$ E in pratica dice che all’infinito viene tutto compattata sul valore atteso La dimostrazione è abbastanza semplice, si sostituisce $(x - E[X])^{2}$ su $X$ di Markov e $\varepsilon^{2}$ a $y$ e poi si dovrebbe già avere il risultato ...

6 min Â· Xuanqiang 'Angelo' Huang

Equazioni non lineari

Per trovare i zeri di una funzione continua non lineare non esistono alcuni metodi diretti che ci portano subito a una soluzione. Per questo motivo andremo ad analizzare molteplici pasis iterativi per trovare i zeri di una funzione. La discussione di convergenza di ordine p è stata già discussa nelle note introduttive convergenza e iterazione, per quanto riguarda i metodi iterativi per risolvere sistemi di equazioni lineari Globale e local Ricordiamo di Norme e Condizionamento, in cui il condizionamento era più o meno una stima di quanto cambia la soluzione quando cambia brevemente l’input. Ma ora vogliamo estendere il concetto per equazioni non lineari. ...

7 min Â· Xuanqiang 'Angelo' Huang

Codifica dei caratteri

Introduzione sull’encoding Ossia trattiamo metodi per codificare caratteri dei linguaggi umani, come ASCII, UCS e UTF. Digitalizzare significa encodarlo in un sistema che possa essere memorizzato su un dispositivo di memorizzazione elettronico. Ovviamente non possiamo mantenere l’informazione così come è, ma vogliamo memorizzarne una forma equivalente, ma più facile da manipolare dal punto di vista del computer. Creiamo quindi un mapping, o anche isomorfismo tra il valore di mappatura (o encoding), solitamente un valore numerico, tra il singolo valore atomico originale e il numero. ...

9 min Â· Xuanqiang 'Angelo' Huang

Lagrange Multipliers

This is also known as Lagrange Optimization or undetermined multipliers. Some of these notes are based on Appendix E of (Bishop 2006), others were found when studying bits of rational mechanics. Also (Boyd & Vandenberghe 2004) chapter 5 should be a good resource on this topic. $$ \begin{array} \\ \min f_{0}(x) \\ \text{subject to } f_{i}(x) \leq 0 \\ h_{j}(x) = 0 \end{array} $$Lagrangian function $$ \mathcal{L}(x, \lambda, \nu) = f_{0}(x) + \sum \lambda_{i}f_{i}(x) + \sum\nu_{j}h_{j}(x) $$ We want to say something about this function, because it is able to simplify the optimization problem a lot, but first we want to study this mathematically. ...

7 min Â· Xuanqiang 'Angelo' Huang

Markov Chains

Introduzione alle catene di Markov La proprietà di Markov Una sequenza di variabili aleatorie $X_{1}, X_{2}, X_{3}, \dots$ gode della proprietà di Markov se vale: $$ P(X_{n}| X_{n - 1}, X_{n - 2}, \dots, X_{1}) = P(X_{n}|X_{n-1}) $$ Ossia posso scordarmi tutta la storia precedente, mi interessa solamente lo stato precedente per sapere la probabilità attuale. Da un punto di vista filosofico/fisico, ha senso perché mi sta dicendo che posso predire lo stato successivo se ho una conoscenza (completa, (lo dico io completo, originariamente non esiste)) del presente. ...

7 min Â· Xuanqiang 'Angelo' Huang