Variational Inference
$$ p(\theta \mid x_{1:n}, y_{1:n}) = \frac{1}{z} p(y_{1:n} \mid \theta, x_{1:n}) p(\theta \mid x_{1:n}) \approx q(\theta \mid \lambda) $$For Bayesian Linear Regression we had high dimensional Gaussians which made the inference closed form, in general this is not true, so we need some kinds of approximation. Laplace approximation Introduction to the Idea 🟩 $$ \psi(\theta) \approx \hat{\psi}(\theta) = \psi(\hat{\theta}) + (\theta-\hat{\theta} ) ^{T} \nabla \psi(\hat{\theta}) + \frac{1}{2} (\theta-\hat{\theta} ) ^{T} H_{\psi}(\hat{\theta})(\theta-\hat{\theta} ) = \psi(\hat{\theta}) + \frac{1}{2} (\theta-\hat{\theta} ) ^{T} H_{\psi}(\hat{\theta})(\theta-\hat{\theta} ) $$ We simplified the term on the first order because we are considering the mode, so the gradient should be zero for the stationary point. ...