Dependency Parsing

This set of note is still in TODO Dependency Grammar has been much bigger in Europe compared to USA, where Chomsky’s grammars ruled. One of the main developers of this theory is Lucien Tesnière (1959): “The sentence is an organized whole, the constituent elements of which are words. Every word that belongs to a sentence ceases by itself to be isolated as in the dictionary. Between the word and its neighbors, the mind perceives connections, the totality of which forms the structure of the sentence. The structural connections establish dependency relations between the words. Each connection in principle unites a superior term and an inferior term. The superior term receives the name governor (head). The inferior term receives the name subordinate (dependent).” ~Lucien Tesnière ...

4 min · Xuanqiang 'Angelo' Huang

Diffusion Models

Diffusion is a physical process that models random motion, first analyzed by Brown when studying pollen grains in water. In this section, we will first analyze a simplified 1-dimensional version, and then delve into diffusion models for images, the ones closest to (Ho et al. 2020). The Diffusion Process This note follows original Einstein’s presentation, here we have a simplified version. Let’s suppose we have a particle at $t = 0$ at some position $i$. We have a probability of jumping to the left of $p$ to right of $q$, the rest is staying at the same position. ...

10 min · Xuanqiang 'Angelo' Huang

Dirichlet Processes

The DP (Dirichlet Processes) is part of family of models called non-parametric models. Non parametric models concern learning models with potentially infinite number of parameters. One of the classical application is unsupervised techniques like clustering. Intuitively, clustering concerns in finding compact subsets of data, i.e. finding groups of points in the space that are particularly close by some measure. The Dirichlet Process See Beta and Dirichlet Distributions for the definition and intuition of these two distributions. One quite important thing that Dirichlet allows to do is the ability of assigning an ever growing number of clusters to data. This models are thus quite flexible to change and growth. ...

7 min · Xuanqiang 'Angelo' Huang

Distributed file systems

We want to know how to handle systems that have a large number of data. In previous lesson we have discovered how to quickly access and make Scalable systems with huge dimensions, see Cloud Storage. Object storage could store billions of files, we want to handle millions of petabyte files. Designing DFSs The Use Case Remember that the size of the files where heavily limited for Cloud Storage. The physical limitation was due to the limited size of a single hard disk, which was usually in the order of the Terabytes. Here, we would like to easily store petabytes of data in a single file, for example big datasets. Another feature that should be easily supported is highly concurrent access to the filesystem, last but not least being able to set up permissions in the system. ...

10 min · Xuanqiang 'Angelo' Huang

Document Stores

p> Document stores provide a native database management system for semi-structured data. Document stores also scale to Gigabytes or Terabytes of data, and typically millions or billions of records (a record being a JSON object or an XML document). Introduction to Document Stores A document store, unlike a data lake, manages the data directly and the users do not see the physical layout. Unlike data lakes, using document stores prevent us from breaking data independence and reading the data file directly: it offers an automatic manager service for semi-structured data that we need to throw and read quickly. ...

6 min · Xuanqiang 'Angelo' Huang

Ensemble Methods

The idea of ensemble methods goes back to Sir Francis Galton. In 787, he noted that although not every single person got the right value, the average estimate of a crowd of people predicted quite well. The main idea of ensemble methods is to combine relatively weak classifiers into a highly accurate predictor. The motivation for boosting was a procedure that combines the outputs of many “weak” classifiers to produce a powerful “committee.” ...

6 min · Xuanqiang 'Angelo' Huang

Fisher's Linear Discriminant

A simple motivation Fisher’s Linear Discriminant is a simple idea used to linearly classify our data. The image above, taken from (Bishop 2006), is the summary of the idea. We clearly see that if we first project using the direction of maximum variance (See Principal Component Analysis) then the data is not linearly separable, but if we take other notions into consideration, then the idea becomes much more cleaner. ...

4 min · Xuanqiang 'Angelo' Huang

Gaussian Processes

Gaussian processes can be viewed through a Bayesian lens of the function space: rather than sampling over individual data points, we are now sampling over entire functions. They extend the idea of bayesian linear regression by introducing an infinite number of feature functions for the input XXX. In geostatistics, Gaussian processes are referred to as kriging regressions, and many other models, such as Kalman Filters or radial basis function networks, can be understood as special cases of Gaussian processes. In this framework, certain functions are more likely than others, and we aim to model this probability distribution. ...

8 min · Xuanqiang 'Angelo' Huang

Graph Databases

We have first cited the graph data model in the Introduction to Big Data note. Until now, we have explored many aspects of relational data bases, but now we are changing the data model completely. The main reason driving this discussion are the limitations of classical relational databases: queries like traversal of a high number of relationships, reverse traversal requiring also indexing foreign keys (need double index! Index only work in one direction for relationship traversal, i.e. if you need both direction you should build an index both for the forward key and backward key), looking for patterns in the relationships, are especially expensive when using normal databases. We have improved over the problem of joining with relational database using Document Stores with three data structure, but these cannot have cycles. We call index-free adjacency: we use physical memory pointers to store the graph. ...

7 min · Xuanqiang 'Angelo' Huang

Introduction to Advanced Machine Learning

Introduction to the course Machine learning offers a new way of thinking about reality: rather than attempting to directly capture a fragment of reality, as many traditional sciences have done, we elevate to the meta-level and strive to create an automated method for capturing it. This first lesson will be more philosophical in nature. We are witnessing a paradigm shift in the sense described by Thomas Kuhn in his theory of scientific revolutions. But what drives such a shift, and how does it unfold? ...

13 min · Xuanqiang 'Angelo' Huang