Autoencoders

In questa serie di appunti proviamo a descrivere tutto quello che sappiamo al meglio riguardanti gli autoencoders Blog di riferimento Blog secondario che sembra buono Introduzione agli autoencoders L’idea degli autoencoders è rappresentare la stessa cosa attraverso uno spazio minore, in un certo senso è la compressione con loss. Per cosa intendiamo qualunque tipologia di dato, che può spaziare fra immagini, video, testi, musica e simili. Qualunque cosa che noi possiamo rappresentare in modo digitale possiamo costruirci un autoencoder....

5 min · Xuanqiang 'Angelo' Huang

Backpropagation

Backpropagation is perhaps the most important algorithm of the 21st century. It is used everywhere in machine learning and is also connected to computing marginal distributions. This is why all machine learning scientists and data scientists should understand this algorithm very well. An important observation is that this algorithm is linear: the time complexity is the same as the forward pass. Derivatives are unexpectedly cheap to calculate. This took a lot of time to discover....

8 min · Xuanqiang 'Angelo' Huang

Linear Regression methods

We will present some methods related to regression methods for data analysis. Some of the work here is from (Hastie et al. 2009). This note does not treat the bayesian case, you should see Bayesian Linear Regression for that. Problem setting In usual regression problems we want to reach the $\arg \min \mathbb{E}_{Y \mid X} \left[ (Y - f(X))^{2} \right]$ and the solution is given by the conditional mean: $f^{*} = \mathbb{E}(Y \mid X = x)$....

11 min · Xuanqiang 'Angelo' Huang

Clustering

Gaussian Mixture Models This set takes inspiration from chapter 9.2 of (Bishop 2006). We assume that the reader already knows quite well what is a Gaussian mixture model and we will just restate the models here. We will discuss the problem of estimating the best possible parameters (so, this is a density estimation problem) when the data is generated by a mixture of Gaussians. Remember that the standard multivariate Gaussian has this format: $$ \mathcal{N}(x \mid \mu, \Sigma) = \frac{1}{\sqrt{ 2\pi }} \frac{1}{\lvert \Sigma \rvert^{1/2} } \exp \left( -\frac{1}{2} (x - \mu)^{T} \Sigma^{-1}(x - \mu) \right) $$ Problem statement 🟩 Given a set of data points $x_{1}, \dots, x_{n}$ in $\mathbb{R}^{d}$ sampled by $k$ Gaussian each with responsibility $\pi_{k}$ the objective of this problem is to estimate the best $\pi_{k}$ for each Gaussian and the relative mean and covariance matrix....

8 min · Xuanqiang 'Angelo' Huang

Counterfactual Invariance

Machine learning cannot distinguish between causal and environment features. Shortcut learning Often we observe shortcut learning: the model learns some dataset dependent shortcuts (e.g. the machine that was used to take the X-ray) to make inference, but this is very brittle, and is not usually able to generalize. Shortcut learning happens when there are correlations in the test set between causal and non-causal features. Our object of interest should be the main focus, not the environment around, in most of the cases....

10 min · Xuanqiang 'Angelo' Huang