Counterfactual Invariance
Machine learning cannot distinguish between causal and environment features. Shortcut learning Often we observe shortcut learning: the model learns some dataset dependent shortcuts (e.g. the machine that was used to take the X-ray) to make inference, but this is very brittle, and is not usually able to generalize. Shortcut learning happens when there are correlations in the test set between causal and non-causal features. Our object of interest should be the main focus, not the environment around, in most of the cases. For example, a camel in a grass land should still be recognized as a camel, not a cow. One solution could be engineering invariant representations which are independent of the environment. So having a kind of encoder that creates these representations. ...