Fisher's Linear Discriminant
A simple motivation Fisher’s Linear Discriminant is a simple idea used to linearly classify our data. The image above, taken from (Bishop 2006), is the summary of the idea. We clearly see that if we first project using the direction of maximum variance (See Principal Component Analysis) then the data is not linearly separable, but if we take other notions into consideration, then the idea becomes much more cleaner. A first approach We want to maximize the distance from the centers, while minimizing the inter-class variance....