Gaussians

Gaussians are one of the most important family of probability distributions. They arise naturally in the law of large numbers and have some nice properties that we will briefly present and prove here in this note. They are also quite common for Gaussian Processes and the Clustering algorithm. They have also something to say about Maximum Entropy Principle. The best thing if you want to learn this part actually well is section 2.3 of (Bishop 2006), so go there my friend :) ...

8 min · Xuanqiang 'Angelo' Huang

Kalman Filters

Here is a historical treatment on the topic: https://jwmi.github.io/ASM/6-KalmanFilter.pdf. Kalman Filters are defined as follows: We start with a variable $X_{0} \sim \mathcal{N}(\mu, \Sigma)$, then we have a motion model and a sensor model: $$ \begin{cases} X_{t + 1} = FX_{t} + \varepsilon_{t} & F \in \mathbb{R}^{d\times d}, \varepsilon_{t} \sim \mathcal{N}(0, \Sigma_{x})\\ Y_{t} = HX_{t} + \eta_{t} & H \in \mathbb{R}^{m \times d}, \eta_{t} \sim \mathcal{N}(0, \Sigma_{y}) \end{cases} $$Inference is just doing things with the Gaussians. One can interpret the $Y$ to be the observations and $X$ to be the underlying beliefs about a certain state. We see that the Kalman Filters satisfy the Markov Property, see Markov Chains. These independence properties allow a easy characterization of the joint distribution for Kalman Filters: ...

3 min · Xuanqiang 'Angelo' Huang

Kernel Methods

As we will briefly see, Kernels will have an important role in many machine learning applications. In this note we will get to know what are Kernels and why are they useful. Intuitively they measure the similarity between two input points. So if they are close the kernel should be big, else it should be small. We briefly state the requirements of a Kernel, then we will argue with a simple example why they are useful. ...

9 min · Xuanqiang 'Angelo' Huang

Markov Chains

Introduzione alle catene di Markov La proprietà di Markov Una sequenza di variabili aleatorie $X_{1}, X_{2}, X_{3}, \dots$ gode della proprietà di Markov se vale: $$ P(X_{n}| X_{n - 1}, X_{n - 2}, \dots, X_{1}) = P(X_{n}|X_{n-1}) $$ Ossia posso scordarmi tutta la storia precedente, mi interessa solamente lo stato precedente per sapere la probabilità attuale. Da un punto di vista filosofico/fisico, ha senso perché mi sta dicendo che posso predire lo stato successivo se ho una conoscenza (completa, (lo dico io completo, originariamente non esiste)) del presente. ...

7 min · Xuanqiang 'Angelo' Huang

Markov Processes

Andiamo a parlare di processi Markoviani. Dobbiamo avere bene a mente il contenuto di Markov Chains prima di approcciare questo capitolo. Markov property Uno stato si può dire di godere della proprietà di Markov se, intuitivamente parlando, possiede già tutte le informazioni necessarie per predire lo stato successivo, ossia, supponiamo di avere la sequenza di stati $(S_n)_{n \in \mathbb{N}}$, allora si ha che $P(S_k | S_{k-1}) = P(S_k|S_0S_1...S_{k - 1})$, ossia lo stato attuale in $S_{k}$ dipende solamente dallo stato precedente. ...

12 min · Xuanqiang 'Angelo' Huang