Rademacher Complexity
This note used the definitions present in Provably Approximately Correct Learning. So, go there when you encounter a word you don’t know. Or search online Rademacher Complexity $$ \mathcal{G} = \left\{ g : (x, y) \to L(h(x), y) : h \in \mathcal{H} \right\} $$ Where $L : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$ is a generic loss function. The Rademacher complexity captures the richness of a family of functions by measuring the degree to which a hypothesis set can fit random noise. From (Mohri et al. 2012). ...