Insiemi numerici

💡 Questa prima parte degli appunti è fortemente mancante 1.1 Insiemistica Tutta Questa prima roba di insiemistica è fatta molto meglio nel corso di logica, in particolare in questo documento Teoria assiomatica degli insiemi 1.1.1 Definizione e caratteristiche degli insiemi Definizione di Campo ordinato (operazioni fra certi insiemi, sia per la addizione, per la moltiplicazione e simili) Corpo commutativo Sono definiti somma e moltiplicazione e proprietà come commutatività, associatività, distributiva, inversi, opposti, zero e nullo...

3 min Â· Xuanqiang 'Angelo' Huang

R e Intervalli

2.1 Necessità e caratteristiche di R 2.1.1 Radici di N non perfetti e Q $\sqrt{n} \in \mathbb{Q} \implies n \text{ è quadrato perfetto}$ Fai lemma della divisibilità fra due numeri Lemma: Dati $m,n,l$ tali che $MCD(m,l)=1$ e $l | m n$ allora allora $l | n$ Questo si risolve con ragionamenti sui fattori di m e n. Per dimostrare che è razionale la radice di solamente una radice perfetta parto da un numero razionale, faccio certi ragionamenti e scoprirò alla fine che il numero deve essere una radice perfetta....

6 min Â· Xuanqiang 'Angelo' Huang

Limiti

Riguardare Successioni per avere primo attacco sui limiti 4.1 Limiti finiti al finito 4.1.1 Intorno sferico Dato l’insieme $\mathbb{R}$ si definisce l’intorno sferico aperto di $x \in \mathbb{R}$ di raggio $r \in \mathbb{R}$ l’insieme $I_r(x) = (x -r, x + r)$ questa nozione è molto importante per definire il limite. Lo useremo subito su un punto di accumulazione 4.1.2 Punto di accumulazione Un punto di accumulazione $x$ di un insieme $A \subseteq \mathbb{R}$ è un punto tale per cui mi posso avvicinare in modo indefinito in quel punto....

10 min Â· Xuanqiang 'Angelo' Huang

Stirling's Approximation

This note will give a brief derivation of Stirling’s approximation. This bound is often useful for factorials. $$ x! \approx x^{x}e^{-x}\sqrt{ 2\pi x } \iff \ln x! \approx x\ln x - x + \frac{1}{2} \ln(2\pi x) $$ This proof (more like an interesting justification). is taken from page 2 of (MacKay 2003). Let’s start with a Poisson distribution with mean $\lambda$ $$ P(r \mid \lambda) = \frac{e^{-\lambda}\lambda^{r}}{r!} $$ If $\lambda$ is large and $r \approx \lambda$, this distribution is approximated by a Gaussian distribution (it is often referred as a discrete Gaussian see Poisson processes)....

2 min Â· Xuanqiang 'Angelo' Huang

Analisi multi-variabile

In questo capitolo cerchiamo di andare oltre alla singola dimensione per l’analisi. Lo spazio $\mathbb{R}^{n}$ Possiamo definire uno spazio Rn come il prodotto cartesiano fra l’insieme R un numero di volte uguale a n $\mathbb{R} \times \mathbb{R} \times ... \times\mathbb{R} = \mathbb{R}^n$ Allora un tipico elemento in Rn è nella forma $(x_1,...,x_n)$, questo elemento si chiama punto, mentre gli elelmenti in R che costituiscono questo elemento si chiamano componenti. Osservazione La maggior parte dei risultati che dimostro nello spazio ordinario (R3) si può dimostrare per Rn, non andiamo più nel dettaglio perché i problemi che ho in spazi maggiori sono parte di materiale per analisi 2...

9 min Â· Xuanqiang 'Angelo' Huang