Limiti
Riguardare Successioni per avere primo attacco sui limiti 4.1 Limiti finiti al finito 4.1.1 Intorno sferico Dato l’insieme $\mathbb{R}$ si definisce l’intorno sferico aperto di $x \in \mathbb{R}$ di raggio $r \in \mathbb{R}$ l’insieme $I_r(x) = (x -r, x + r)$ questa nozione è molto importante per definire il limite. Lo useremo subito su un punto di accumulazione 4.1.2 Punto di accumulazione Un punto di accumulazione $x$ di un insieme $A \subseteq \mathbb{R}$ è un punto tale per cui mi posso avvicinare in modo indefinito in quel punto. Infatti deve $\forall r > 0 \in R, \exists x_ 1 \in A : x_1 \in I_r(x) \wedge x_1 \not= x$ ossia per cui $A \cap I_r(x) \not= \varnothing$. ...