Analisi di Convessità

Questo argomento è stato trattato durante dopo la discussione dei Massimi minimi multi-variabile, però è stato ripreso anche nella forma R to R, quindi credo necessiti di un foglio a parte. Affine set Lines $$ x = \theta x_{1} + (1 - \theta)x_{2} $$ This is a parametrization of the line Example: Def: affine set A combination where the coefficients add up to 1. We can say that this set is unique given two points. ...

13 min · Xuanqiang 'Angelo' Huang

Analisi multi-variabile

In questo capitolo cerchiamo di andare oltre alla singola dimensione per l’analisi. Lo spazio $\mathbb{R}^{n}$ Possiamo definire uno spazio Rn come il prodotto cartesiano fra l’insieme R un numero di volte uguale a n $\mathbb{R} \times \mathbb{R} \times ... \times\mathbb{R} = \mathbb{R}^n$ Allora un tipico elemento in Rn è nella forma $(x_1,...,x_n)$, questo elemento si chiama punto, mentre gli elelmenti in R che costituiscono questo elemento si chiamano componenti. Osservazione La maggior parte dei risultati che dimostro nello spazio ordinario (R3) si può dimostrare per Rn, non andiamo più nel dettaglio perché i problemi che ho in spazi maggiori sono parte di materiale per analisi 2 ...

9 min · Xuanqiang 'Angelo' Huang

Calcolo differenziale

10.1 Derivata parziale La derivata vuole descrivere quanto varia una funzione al variare dell’input. Ma ora siamo in più dimensioni, quindi vogliamo descrivere il variare dell’input come il variare della distanza euclidea $\dfrac{\delta f}{\delta x}(x,y) = \lim _{h \to 0} \dfrac{f(x + h, y) - f(x, y)}{h}$ ovvero sto facendo variare solamente una variabile (la y in questo caso è come se fosse una costante!?) Questo è un rapporto incrementale su una direzione. ...

12 min · Xuanqiang 'Angelo' Huang

Derivate

Geometria introduttiva Tangente e pendenza Si può trovare la relazione fra la pendenza della retta e la tangente. Possiamo analizzare la retta dal punto di vista analitico, della formula e si può dimostrare che data una retta nella forma $y = mx + q$ $m$ è la pendenza della retta. Formula generale delle rette Dati qualunque due punti .$(x_1, y_1), (x_2, y_2)$ possiamo dire che la pendenza è esprimibile come ...

4 min · Xuanqiang 'Angelo' Huang

Fourier Series

Intuition $$ \frac{1}{\sqrt{ 2\pi }}, \frac{\cos(kx)}{\sqrt{ \pi }}, \frac{\sin(kx)}{\sqrt{ \pi }}, \dots $$$$ \int_{0}^{2\pi} (\sin (kx))^{2} \, dx = \int_{0}^{2\pi} (\cos(kx))^{2} \, dx = \pi $$$$ \int_{0}^{2\pi}\sin(kx)\sin(hx) \, dx = \int_{0}^{2\pi}\cos(kx)\cos(hx) \, dx = 0 $$$$ \int_{0}^{2\pi}\sin(kx)\cos(hx) \, dx = \int_{0}^{2\pi} \sin(kx) \, dx = \int_{0}^{2\pi}\cos(hx) \, dx = 0 $$Proofs of the relations In this section we quickly prove why the above equations hold. First we all agree that $\int_{0}^{2\pi} \sin(kx) \, dx = \int_{0}^{2\pi} \cos(hx) \, dx = 0$ because their period divides $2\pi$ and the sum of the area of a period is clearly 0. Or we can explicitly find the primitive and solve ...

2 min · Xuanqiang 'Angelo' Huang